Уже сегодня любой желающий может редактировать гены. А не пора ли задуматься о возможных последствиях?

nabor_DNA

Каждый из нас понимает, что хирургическую операцию на сердце человека может делать только хирург, который имеет соответствующее образование, опыт и соответствующие права, предоставленные ему государством. Операция может происходить исключительно в специализированном «чистом» помещении и с множеством помощников (анестезиолог, медсестры…), которые сопровождают хирурга в течение всей операции и помогают ему достичь требуемого результата.  Операция происходит в специализированном помещении, где поддерживается довольно высокий уровень «биологической частоты»,  иначе, невзирая на все знания хирурга, пациент умрёт!

Но почему-то, никого не волнует тот факт, что «научные эксперименты» по созданию генно-модифицированных штаммов бактерий не только можно проводить без соответствующего образования, но и с «грязными руками» и в любом, даже абсолютно неподготовленном для этого помещении.

Похоже, некоторые современные биологи не смотрели художественный фильм «Муха» (англ. The Fly) — фильм режиссёра Дэвида Кроненберга, вышедший на экраны в 1986 году. Экранизация рассказа французского писателя Жоржа Ланжелана и ремейк одноименного фильма 1958 года. А совершенно зря…

***

Технология редактирования генома, известная как CRISPR/Cas9, была разработана в 2013 году, и всего за пару лет совершила революцию в генной инженерии. Метод, основанный на молекулярном защитном механизме бактерий, позволяет с высокой точностью вырезать и изменять участки ДНК любых организмов прямо в живых клетках.

И если раньше манипуляции с генами производили в специализированных лабораториях крупных научных центров, сейчас новая технология имеет шанс получить по-настоящему массовое распространение. Молекулярный биолог Джосиа Зайнер (Josiah Zayner) из Исследовательского центра Эймса, НАСА, планирует создать комплект для проведения научных экспериментов дома. С помощью него можно будет изменять гены дрожжей и бактерий хоть на собственной кухне.

Напомним, что «сгруппированные регуляторные разделенные промежутками короткие палиндромные повторы» (а именно так звучит полное название CRISPR на русском языке) были впервые обнаружены в геноме бактерий и архей. Позже выяснилось, что одноклеточные, пережившие нападение вируса, встраивают в свою ДНК фрагмент генетического кода врага, чтобы будущие поколения могли узнать аналогичный штамм. При встрече с неприятелем, чьи данные есть в своеобразной генетической картотеке, бактерии задействуют особый молекулярный комплекс, который прикрепляется к вирусной ДНК точно в месте, соответствующем сохранённому фрагменту, и разрезает её с помощью одного из белков группы Cas, уничтожая вирус. Совсем недавно учёные обнаружили, что аналогичные молекулярные ножницы можно направлять на любой участок генома млекопитающих, в том числе человека, и тем самым исправлять или заменять самые разные гены.

Зайнер решил, что если CRISPR/Cas9 является ключевым инструментом современной науки, он должен быть доступен всем, включая начинающих исследователей-любителей. Для этого он открыл онлайн-магазин The ODIN, призванный содействовать домашним экспериментам с синтетической биологией, а затем запустил компанию по продаже полных наборов оборудования и реактивов для генной инженерии на краудфандинговой платформе Indiegogo.

Читать далее 

В истории человечества наступает новая эра. Эра программируемых существ.

DNA_1

Конечно же речь идет пока о «бактериях» и о «микроорганизмах». Но понимание принципиальных отличий «микроорганизмов» от «макроорганизмов», позволяет автору блога утверждать — «Наступает эра создания программируемых существ» или, попросту, БИОРОБОТОВ.

Биоинженеры из MIT разработали язык программирования, который позволит придать новые функции клеткам кишечной палочки.

Американские исследователи разработали инструмент, с помощью которого определять функции живых клеток становится так же просто, как писать код для компьютеров. Инструмент основан на уже существующем языке программирования Verilog, который используется разработчиками чипов при проектировании электронных схем. Идея данной разработки – сделать программирование клеток похожим на программирование компьютеров.

«Мы используем тот же подход, что применяется для проектирования электронного чипа. Сходство очевидно в каждом из шагов, вот только схема выполнена не на кремнии, а заложена в ДНК» – комментирует Крис Войт (Chris Voigt), один из авторов работы.

Цели синтетической биологии – создание клеток, функции которых могут быть настроены под определённые нужды. Изменение ДНК микроорганизмов позволяет перепрограммировать их под выполнение конкретных задач, например, производство лекарственного средства или изменение цвета для обнаружения вирусов в крови. Однако, несмотря на активную работу в этой области, процесс этот всё ещё достаточно сложный и кропотливый.

Поэтому исследователи и начали адаптировать символьный язык, позволяющий задавать функции компьютерной электронной схеме, для нужд биологии: команда Войта поняла, что по такому же принципу можно работать и с цепочками ДНК.

Учёные разработали систему под названием Cello, которая позволяет использовать язык Verilog для работы с последовательностями ДНК. С помощью команд генерируется цепочка ДНК, кодирующая указанную информацию, а после эта модифицированная ДНК внедряется в микроорганизм.

Войт и его коллеги разработали и испытали таким образом 60 схем, 45 из которых отлично работали во время испытаний, при этом одна из них стала самой крупной биологической цепочкой, когда-либо смоделированной учёными – такая ДНК состояла из 12 тысяч единиц и семи логических вентилей.

«Cello позволяет специалистам по синтетической биологии главным образом сосредоточиться на том, под какую цель перепрограммировать бактерии, а не на том, как же это сделать«, – объясняет соавтор работы Мэтью Беннет (Matthew Bennett) из Университета Райса в Хьюстоне.

По мнению Войта, в ближайшее время можно ждать выхода множества приложений, облегчающих программирование клеток.
«Мы находимся на пороге перепрограммирования клеток для терапевтических применений, которые будут действовать почти так же, как бактерии йогурта производят полезные для здоровья вещества в кишечнике«, – говорит учёный.

Читать далее 

Современная наука не обладает достаточными знаниями базовых принципов для построения простой биологической клетки

J-Craig-VenterМогут ли ученые послойно уменьшить сложность жизни, чтобы выявить суть жизни, основу биологии? Пытаясь это проделать, ученые создали искусственный организм, обладающий лишь генами, необходимыми ему для выживания. Но они понятия не имеют, что делает примерно треть этих генов.

Работа Крейга Вентера и его коллег на эту тему была опубликована в журнале Science буквально на днях. Команда Вентера скрупулезно развинчивала геном Mycoplasma mycoides, бактерии, которая проживает в крупном рогатом скоте, чтобы выявить чистый костяк генетических инструкций, способных делать жизнь как процесс. Результатом этого стал крошечный организм под названием syn3.0, содержащий всего 473 гена. (Для сравнения: кишечная палочка E. coli содержит от 4 до 5 тысяч генов, а человек — порядка 20 000).

Тем не менее в этих 473 генах обнаружилась зияющая дыра. Ученые понятия не имеют, что делает треть этих генов. Вместо того чтобы подсветить основные компоненты жизни, syn3.0 показал, сколько нам осталось узнать о самых основах биологии.

«На мой взгляд, особенно интересно, что это может нам рассказать о том, чего мы не знаем, — говорит Джек Шостак, биохимик из Гарвардского университета, не принимавший участия в исследовании. — Так много генов с неизвестными функциями кажутся настолько важными».

«Мы совершенно удивлены и шокированы. Исследователи ожидали, что в смеси будет некоторое количество неизвестных генов, возможно, от пяти до десяти процентов генома. — Но в результате получилась потрясающая цифра»— говорит Вентер, биолог, возглавляющий Институт им. Дж. Крейга Вентера в Ла-Хойя, Калифорния, известный за свой вклад в картирование человеческого генома.

Семя для происков Вентера было посажено в 1995 году, когда его команда расшифровала геном Mycoplasma genitalium, микроба, живущего в мочеполовых путях человека. Когда ученые Вентера начали работать над этим новым проектом, они выбрали M. genitalium — второй полностью секвенированный бактериальный геном — в частности, из-за его крошечного размера. С 517 генами и 580 000 буквами ДНК, эта бактерия обладает одним из самых маленьких известных геномов среди самовопроизводящихся организмов. (Некоторые симбиотические микробы могут выживать со 100-буквенными генами, но полагаются на ресурсы своего хозяина в таком случае).

Компактный набор ДНК M. genitalium поднял вопрос: какое наименьшее число генов может позволить себе клетка? «Мы хотели узнать базовые генные компоненты жизни, — говорит Вентер. — 20 лет назад это казалось хорошей идеей — мы и понятия не имели, к чему нас приведут двадцатилетние поиски».

Вентер и его коллеги изначально намеревались создать урезанный геном, основанный на знаниях учеными биологии. Они хотели начать с генов, участвующих в наиболее важных процессах клетки, вроде копирования и перевода ДНК, и от них уже строить.

Но прежде чем они смогли бы создать эту краткую версию жизни, ученым нужно было выяснить, как спроектировать и построить геном с нуля. Вместо того чтобы редактировать ДНК в живом организме, как делает большинство ученых, они хотели получить полный контроль — спланировать свой геном на компьютере и затем синтезировать ДНК в пробирках.

В 2008 году Вентер и его соратник Гамильтон Смит создали первый синтетический бактериальный геном, построив модифицированную версию ДНК M. genitalium. Затем, в 2010 году, они создали первый самовоспроизводящийся синтетический организм, произведя версию генома M. mycoides и пересадив его разным видам Mycoplasma. Синтетический геном возобладал над клеткой, вытеснил родную рабочую систему и заменил ее версией людей. Искусственный геном M. mycoides был практически идентичен природной версией, за исключением нескольких генетических пометок — ученые добавили свои имена и несколько знаменитых цитат, включая слегка искаженную версию высказывания Ричарда Фейнмана: «Чего я не могу создать, того не понимаю».

Заполучив правильные инструменты, ученые разработали ряд генетических чертежей для своих минимальных клеток и затем попытались построить их. «Ни один замысел не удался», говорит Вентер. Он посчитал свои многочисленные неудачи наказанием за их высокомерие. Обладает ли современная наука достаточными знаниями базовых биологических принципов, чтобы построить клетку? «Ответом было сокрушительное нет», говорит он.

Читать далее