Онтологическое доказательство Гёделя о существовании Бога

kurt_gödelМатематик Курт Гёдель предоставил формальные аргументы существования Бога. Его аргументы были опубликованы намного позже, после его смерти. Он привел аргументы, основанные на модальной логике; он использовал концепцию свойств, которые в итоге приводят к существованию Бога.

Эта теорема не доказывает существование Бога, а только возможность того, что исходя из модальной логики всемогущее существо может существовать.

Определение 1: «X» является богоподобным, тогда и только тогда, если все его свойства положительные.
Определение 2: «А» является свойством «X» тогда и только тогда, если для каждого свойства «B», «B» имеет свой «X», и «A» вытекает из «B».
Определение 3: «X» обязательно существует тогда и только тогда, если все его составляющие однозначно определены.
Аксиома 1: Если свойство положительно, то его обратное не является положительным.
Аксиома 2: Любые главные свойства строятся на основных свойства, то есть главное свойство — позитивно, только если все основные — позитивны.
Аксиома 3: Свойства Богоподобности всегда положительные.
Аксиома 4: Если главное свойство — положительное, то все его составляющие — положительные.
Аксиома 5: Существование — положительное свойство
Аксиома 6: Для любого главного свойства «P», если «P» положительно, то его свойства положительны.
Теорема 1: Если свойство положительно, то это можно доказать.
Вывод 1: Свойство быть Богоподобным — постоянно.
Теорема 2: Если что-то Богоподобное, то оно должно существовать.
Теорема 3: Богоподобность всегда можно доказать.

Читать далее 

Как математика помогает обосновать истинность какого-либо утверждения

proofАбориген из племени мумба-юмба заявил западному антропологу, что дважды два будет пять.

Антрополог поинтересовался, как он пришел к такому выводу.

— Разумеется, я всё доказал математически, — ответил абориген.

— Я завязал на веревке два узелка, затем завязал ещё два узелка на другой веревке. А когда я связал обе верёвки вместе, у меня получилось пять узелков.


Для справки:

Математика — фундаментальная наука, предоставляющая (общие) языковые средства другим наукам; тем самым она выявляет их структурную взаимосвязь и способствует нахождению самых общих законов природы.

Доказательство — рассуждение по определенным правилам, обосновывающее какое-либо утверждение.

Логическое доказательство — логическая операция обоснования истинности утверждения с помощью фактов и связанных с ним суждений. С помощью совокупности логических приёмов истинность какого-либо суждения обосновывается исходя из других истинных суждений.

Математическое доказательство — рассуждение с целью обоснования истинности какого-либо утверждения (теоремы), цепочка логических умозаключений, показывающая, что при условии истинности некоторого набора аксиом и правил вывода утверждение верно.